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Abstract—Nield’s linear stability analysis (1964) for a horizontal liquid layer considering surface tension

and buoyancy effects is extended to the case of water with maximum density effect for the temperature

range 0-30°C. Two thermal parameters (4,, 4;) and three physical parameters (Bi, Ra, Ma) appear in
the analysis. Typical results are presented for the cases involving heating from below and above.

NOMENCLATURE

A, temperature difference ratio
(Tl - Tmax)/":d;

a, dimensionless wave number;

Bi, Biot number, god/K;

d, liquid layer thickness;

g gravitational acceleration;

K, thermal conductivity of liquid;

M, number of divisions for liquid layer;

Ma, Marangoni number, oo (AT)d/(p0);

P, pressure;

D, dimensionless perturbation pressure,
P f(poov/d®);

9o, rate of change with temperature of the
time rate of heat loss per unit area from
free upper surface;

Ra, Rayleigh number, see equation (10);

T, T1,T;, temperature, lower plate temperature,
free surface temperature, respectively;

t, time;

U,V,W, perturbation velocity components in
X, Y, Z directions;

u,u,w, dimensionless perturbation velocities
(U, V,W)/x/d);

X,Y,Z, rectangular coordinates;

x,y,2, dimensionless coordinates (X, Y, Z)/d.

Greek symbols

o, thermal diffusivity;

B, coefficient of thermal expansion;

Y1,725 temperature coefficients for density—
temperature relationship;

0, dimensionless temperature disturbance,
0'/AT;

U, viscosity;

A1, A2, thermal parameters defined in
equation (9);

v, kinematic viscosity;

25 Pos density, reference density;

do, negative of the rate of change of surface
tension with temperature,

T, vertical temperature gradient (T — T2)/d;

AT, temperature difference (T; — T3) = d.
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Superscripts and subscripts

'

, prime, perturbation quantity;
+ k]

dimensionless disturbance amplitude;
b, quantity at unperturbed static state;
max, value at a density maximum.

1. INTRODUCTION

IN RECENT years, experimental investigations on the
onset of convection in a horizontal water layer have
been reported in the literature for the thermal con-
ditions involving both melting [1—4] and formation
[1, 5] of ice. In these studies, the water layer is
characterized by stable upper region and potentially
unstable lower region separated by an interface with
maximum density at 4°C and by continuously changing
layer thickness. Theoretical studies on thermal in-
stability of a horizontal liquid layer with maximum
density have also been presented for various boundary
conditions corresponding to rigid and free surfaces
[6-10]. Previous theoretical and experimental investi-
gations on thermal instability with maximum density
effects are confined to Rayleigh problem only where
the driving force for convection is buoyancy force. For
thin horizontal liquid layers with an upper free surface,
it is known that the onset of convection can be induced
by surface-tension gradients [11] and buoyancy
forces [12, 13].

The purpose of this study is to determine the
stability criteria for the onset of cellular convection
driven by surface tension and buoyancy force in a
horizontal thin liquid layer by considering the density
inversion effect for water using a cubic temperature-
density relationship. The lower boundary is taken to
be rigid and thermally conducting while at the upper
free surface Pearson’s boundary conditions [11, 12]
are imposed to facilitate the analysis. With the
maximum density effect, the liquid layer can be unstable
regardless of whether heating is from below or above.
The physical model in the present instability analysis
is patterned after that of Nield [12]. The maximum
density effect for water temperatures ranging from 0 to
30°C is of primary concern in this study. The
temperature regime under consideration may be
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observed under northern climatic conditions. The
results of present analysis may be used in assessing
the importance of cellular convection in the growth
and decay of ice in contact with a thin water layer.
The incorporation of the maximum density effect in
instability analysis on buoyancy and surface-tension
induced cellular convection does not appear to have
been considered in the past.

2. FORMULATION OF THE THERMAL
INSTABILITY PROBLEM
Following the known procedure for linear stability
analysis [10, 14, 15] and referring to the coordinate
system shown in Fig. 3, the perturbation equations
can be written as

%‘ti _ _i%wv;{_uuz @
‘?:= _%ngi,y‘zv 3)
a_g = —;j—o(;fZ)/ +vWi'yz W——OH 4)
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where V}yz = 0%/0X*+8%/dY?+06%Z% and the per-
turbed quantities for temperature, pressure and density
are defined by T= T,(Z)+6(t, X,Y,Z), P=P,+ P,
and p = py+Op, respectively. As shown in [12], the
boundary conditions at the lower boundary are

oW
— =0 and =0 at Z=0 (6

W =0,
cZ

while at the upper boundary

aw 2% %0
W=0, pv5?=0'0<53+—a?> and
—-Kfﬁ:qoé)’ at Z=d. (7)
oz

The density—temperature relationship for water can be
approximated by the following equation for the
temperature range 0-30°C [10].

p= Pmax[l—VI(T_ Tmax)z_yl(T_ Tmax)3]~ (8)
Considering the change in the density dp caused by
the temperature perturbation 6, one obtains the

following expression after neglecting the terms contain-
ing (#')* or higher order.

op = _pmax[z)’l (4AT) {1 + g—l—z—(AA T)H

: 4 zy
X0|i1+i1<d>+iz<d) :l (9)

where
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A = (11— Tha)/AT and AT = Ty — T, = d. The ther-
mal parameters A; and A, were first introduced by
Sun et al. [10].

Introducing the dimensionless variables (X, Y, Z) =
d(x,y,2), (U,V,W)=(w/d)(uv,w), P = (poav/d*)p,
&' = (AT)6, and eliminating u, v, p by using continuity
equation, one obtains the following perturbation
equations by assuming the principle of exchange of
stability to be valid [10, 15].

V2Vl = —Ra(l+ 21 2+ i, 22)V36 (10)
V= —w (11)

where Ra=g(2y1 AATYAT)d’[1+(3y2/2y: (AAT) ) f(ve),
V2= 8%/8x%+ 0%/0y* + 8%/0z% and Vi = 82/0x2 + 8% /0y>.
The boundary conditions are

~
’

ow
oz

z=0 (12)

2

20
w=0, 2% = MaV?0 and S =-Baiz=1(13)
Z

> 622
where Ma = o4 (AT)d/(ux) = Marangoni number and
Bi = god/K = Biot number. In contrast to the classical
Benard Problem, the onset of convection is possible
with heating from below or above because of the
presence of (AT)? in the expression for Rayleigh
number. Since restriction is made to the case where
instability first appears in the form of cellular con-
vection rather than oscillations associated with over-
stability, the following normal modes can be assumed
for the disturbance quantities.

[w, 0] = [w*(2),0*(z)] exp[i(a1 x+ a2 y)].

Substituting equation (14) into equations (10) and (11),
one obtains

(14)

(D?—a?yw* = a®Ra(l + A z+4,20)8%  (15)
(D*—a®0*" = —w™. (16)
With the boundary conditions
whr=Dwr=6"=0 at z=0 (17
wr =0, D*w* = —a’Maf* and
DO = —Big* at z=1 (18)

where D = d/dzand a = (af +a3)"/? is the wave number
of the disturbance. For the limiting case Ma = 0 and
Bi = oo, the present eigenvalue problem reduces to that
discussed by Sun et al. [10]. When Ra = 0, the problem
reduces to that solved by Pearson [11]. The limiting
values Bi = 0 and oo correspond to constant heat flux
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and constant temperature and the surface is usually
referred to as “insulating” and “thermally conducting”
respectively. For given thermal boundary conditions
(given 4y, 4, and Bi} and a given Marangoni number
Ma, the neutral stability relations give Ra as a function
of a and the critical (minimum) Rayleigh number is
sought. Conversely when Ra is known, one can
determine the critical Marangoni number and the
corresponding wavenumber. Apparently, the present
problem can be solved by analytical method [10, 12,
15, 16] as well as finite-difference method. The
numerical method is preferred in this study since the
efficient general finite-difference method is available
from the related study [17].

The finite-difference scheme used is due to Thomas
[18, 19] and the iterative solution starts with equation
(11) by using wy = sin(2nk/M), k= 2,..., M for the
disturbance velocity w*. The mesh size used is M = 50
and a new and improved eigenvalue Ra or Ma is
calculated by the following equation [20].

(Ra, M@)oy = (Ra, Ma)yq [ 3 (i 2 | V2/
k
[T ] (19
k

The convergence criterion is

;i(wg )new—(wl?)old !/(R\: {(W;)new S 10_6 » (20)

It is found that only a few iterations are required to
satisfy the above criterion and five significant figures
for critical eigenvalue are correct.

3, NUMERICAL RESULTS AND DISCUSSION

Because of the number of parameters involved, only
typical numerical results can be presented here. The
thermal condition parameters 4, A, depend on 4 as
well as AT = 7d. For the temperature range (0-30°C)
under consideration, A is always positive and 1, is
always negative. Furthermore, the temperature co-
efficient y, (positive) is of order 107> and 1, (negative)
is of order 1077, The expression for i, reveals that
A2 is pegative for heating from below and positive for
heating from above. In addition, the unstable liquid
layer is always confined to the region near the bottom
plate and instability occurs only when Tj > 4°C for
heating from below and when Ty < 4°C for heating
from above,

Figures 1 and 2 show neutral stability curves for
various cases and the effect of the parameter can be
seen clearly. The limiting cases of Ra = 0 and Ma =0
corresponds to Pearson problem [11] and Rayleigh
problem, respectively. The distributions of eigen-
functions w* and 87 are shown in Fig. 3 for Ma = 10,
Ay = —1.5, A, = —0.2 (heating from below) with Biot
number as parameter. It is seen that the curves are
quite similar in the lower region up to the location
z where the value is maximum. Near the upper free
surface, the Biot number effect is quite appreciable,
particularly for 6*. The disturbance profiles for
A1 = =2, Ay = 04 (heating from above) and Bi = 100
are shown in Fig. 4. With Ma = 0, the disturbance
quantity becomes negative. Otherwise the curves for
Ma = —30 and — 1000 are similar.
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F1G. 2. Neutral stability curves for 1; = ~0.75,
Az =0, Ma=10% and A;= —2.5, 1, =04 and
Ra = 10°.

The relation between critical Marangoni number
Maga* and Rayleigh number is shown in Fig. S for a
range of Biot numbers with A, = —1.5and 4; = —0.2
(heating from below). As Bi increases, the critical
Marangoni number also increases supporting the
physical explanation given in [12] for the case of
conducting free surface (Bi = o0). Figure 6 illustrates
the variation of the critical Rayleigh number Ra* with
the Marangoni number for a range of Biot numbers
with A; = ~1.25 and A, = 0. The general trend is
similar to that shown in Fig. 2 of [13] which
corresponds to the limiting case without maximum
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FiG. 3. Coordinate system and disturbance profiles for
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Ay = —0.2.

density effect. For smaller Biot numbers, the
Marangoni effect is seen to be appreciable. As explained
in [12], the critical Rayleigh number for a fixed value
of Ma is clearly seen to be an increasing function of
Bi. The expression for the thermal parameter y; reveals
that 1, = 0 when y, = 0 (parabolic density-tempera-
ture relation valid for temperature range 0~ 8°C)
or Ty = Tmax. For given values of Marangoni number,
the relation between critical Rayleigh number Ra* and
Biot number is shown in Fig. 7 for A; = —1.5 and
Az = —02 (heating from below). At Bi=10% the
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FiG. 6. Relation between critical Rayleigh
number and Marangoni number with Bi
as parameter for 4y = —1.25and 4, = 0.
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Fic. 7. Relation between critical Rayleigh number and Biot
number with Ma as parameter for 4, = —1.5and Az = —0.2,

asymptotic value Rg* = 7023.4 is reached. In interpret-
ing the behavior of the curves for Mg = 100 and 1000
at the other end, it is useful to note that for a given
Marangoni number a critical value of Ra* does not
exist below a certain value of Bi as shown in Fig. 6.
Similar plot for the case of heating from above with
Ay = —2.0 and 4, = 04 is shown in Fig. 8. One also
notes the existence of the asymptotic value for Ra*
at Bi= 10* Selected numerical instability results are
listed in Tables 1 and 2 for future reference. For the
case when buoyancy effects are negligible (Ra = 0), the
values of the critical Marangoni number and the cor-
responding wavenumber agree excellently with those
listed in [12, 21] for various values of Bi. On the other
hand, with Ma=0 and Bi=10* the values of
Ra* = 70234 and a* = 2992 compare well with
Ra* = 7027.86 and a* = 2987 listed in [22] for
Bi = oo. Thus, one may conclude that the present
numerical results are sufficiently accurate (five
significant figures are correct).
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Table 1 Instability Results for A] = =1.5 and >\2 = -0.2
Ra 0 103 5 x 10° Ma 0 10 103
Bi a*  Ma* at  Ma* a*  Ma* Bi  a* Ra* a* Ra*  a* Ra*
0 1.993 79.687 2.054 76.107 2.282 64.023 0 3.137 7587.0
1 2.266 116.25 2.282 104,41 2.422 82.070 1 3.003 7471.0
10 2.742 413.92 2.592 339.32 2.652 235.25 4 3.080 7297.4 2.693 5840.2
107 2.975 3307.8 2.722 2642.0 2.732 1745.8 10 3.013 7176.7 2.856 6482.8
103 3.009 32.21x10° 2.742 25.65x10° 2.742 16.84x10° 60 2.995 7056.0 2.967 6923.5 2.774 5203.0
10* 3.013 32.12010% 102 2.994 7043.3 2.977 6962.8 2.831 6067.5
10° 2.992 7025.3 2.990 7017.1 2.975 6941.8
10t 2.992 7023.4 2.991 7022.6 2.990 7015.2

Table 2 Instability Results for A1 = - 2.0, Ay = 0.4
Ma 84 0.1 1.0 10 102 108 o
a* 4.603 4.002 3.402  3.332  3.322  3.322
0
Ra* 13535 12502 11804 11539 11500 11495
, a* 3.346  3.326  3.322
210
Ra* 11600 11507 11496
s 3.402  3.338  3.322
-10
Ra* 12059 11565 11496
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F1G. 8. Relation between critical Rayleigh number and Biot
number with Ma as parameter for 1; = —2.0 and A, = 0.4.
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Nield [ 12, 26] concludes for the case of linear density
variation that the coupling between the buoyancy and
surface-tension effects is surprisingly tight for all values
of Bi and especially tight for Bi = 0. It is instructive
to compare the present results considering maximum
density effects with those shown in Figs. 1 and 2 of [12].
The comparison is shown in Figs. 9 (plot of Marangoni
and Rayleigh numbers for marginal stability) and 10
(plot of wavenumber corresponding to marginal
stability against normalized Rayleigh number). Figure 9
shows that with maximum density effect the coupling
is rather weak and the Biot number effect is character-
istically different. Furthermore, Nield’s result [12]
shows that the form of the relationship between Ma
and Ra is a rather weak function of the Biot number
but this is not so for the present problem. As noted
by Nield [12, 26], the departure of an actual curve from
the straight line, Ra/Ra.+Ma/Ma. = 1, representing
perfect coupling, is a measure of the amount of
uncoupling. Ra, is the critical Rayleigh number cor-
responding to Ma = 0 and Ma, corresponds to Ra = 0.
In Fig. 10, one sees that when the free surface is
“insulating” (Bi = 0), the coupling is especially tight for
the case of linear density variation [12] but the
dimensionless wavenumber for the present problem
varies considerably as the value of Ra/Ra. increases
from 0 to 1. Figure 10 also shows that larger cells or
smaller wavenumbers are associated with the insulating
case Bi =0. At this point, Fig. 3 also supports the
observation that with an insulated boundary it is easier
for temperature perturbations to be set up [12]. As Bi
increases, the corresponding wavenumber increases
and the size of the convection cell decreases.

Streamlines in Benard convection cells induced by
surface tension and buoyancy are given by Nield [23].
The streamlines in the two vertical planes of symmetry
of a hexagonal cell at the onset of convection are shown
in Fig. 11(a) and (b) for Ay = —15, A= —02,
Ma =10 and Bi = 100 by using equations (4) and (5)
of [23]. In Fig. 11, the left-hand margin represents the
cell boundary and the right-hand margin corresponds
to the cell centre. In contrast to the streamline patterns
shown in [23], the eyes of the streamlines are seen to
be located nearer to the lower rigid plate. Figure 3 also
shows that the maximum vertical disturbance w* is
located nearer to the bottom plate. One notes that for
the present problem the unstable layer is situated near
the bottom plate.
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4. CONCLUDING REMARKS
1. The physical model [12] assumes that the free
upper liquid surface remains undeformed. Nield’s linear
stability analysis [12] considering surface tension and

buoyancy effects has been confirmed by experiments
[24, 25]. The limitation of the assumption that
departures of the upper surface from a horizontal plane
are negligible as well as the possibility for oscillatory
instability is well discussed by Nield [26]. Future
analysis should include surface viscosity effect and
surface deformation pointed out by Secriven and
Sternling [27].

2. The case of heating from above may have direct
application in surface melting involving ice layer on a
lake or pond. The present analysis can be used in
predicting the onset of convection for a thin liquid layer
on ice driven by surface-tension gradients and
buoyancy forces.

3. Within the scope of present study, a full para-
metric study of the problem is not practical since two
thermal condition parameters {41,4;) and three flow
parameters (Bi, Ra, Ma) appear in the analysis. The
graphical results presented are useful in assessing the
effects of Bi, Ra and Ma on the onset of instability.

4. The Biot number effect is similar to that discussed
in[12]. The detailed physical explanation given in [12]
provides further insight into the role of maximum
density in the present instability problem.
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EFFET DE DENSITE MAXIMALE SUR LINSTABILITE THERMIQUE PRODUITE PAR
UNE COMBINAISON DES FORCES DE GRAVITE ET DE LA TENSION SUPERFICIELLE

Résumé—L’étude analytique de stabilité linéaire de Nield (1964), pour une couche horizontale de liquide,
qui tient compte de l'effet de la tension superficielle et des forces de gravité, est étendue au cas de I'eau
avec effet de densité maximale dans le domaine de températures 0—30°C. Deux paramétres thermiques
(41, 42) et trois paramétres physiques (Bi, Ra, Ma) interviennent dans I'analyse. On donne les résultats
représentatifs des cas qui supposent un chauffage soit par le dessous soit par le dessus.

DER EINFLUSS MAXIMALER DICHTE AUF DIE VON AUFTRIEB UND
OBERFLACHENSPANNUNG ERZEUGTE THERMISCHE INSTABILITAT

Zusammenfassung— Die lineare Stabilitdtsanalyse von Nield (1964) fiir eine horizontale Fliissigkeitsschicht

unter Berticksichtigung der Oberflichenspannung und der Auftriebseffekte wird erweitert auf den Fall

von Wasser mit einem Maximaldichteeffekt fiir den Temperaturbereich von 0-30°C. In der Analyse

erscheinen zwei thermische Parameter (41, 4.} und drei physikalische Parameter (Bi, Ra, Ma). Fiir Heizung
von unten und von oben werden typische Ergebnisse gebracht.

BIIMSTHUE MAKCHUMAIJIBHON TIJIOTHOCTU HA KOHBEKTUBHVIO
HEYCTOUYMBOCTD 3A CUET COBMECTHOI'O AEVCTBUS IIOABEMHON
CHJIbI 1 NNOBEPXHOCTHOI'O HATSIDKEHUSA

AnHoTams — JluHelnbii ananu3 Hunga (1964) yCcTOMMMBOCTH TOPM3OHTANBHOTO CNOSA XHAKOCTH

C YY€TOM IOBEPXHOCTHOTO HATSXEHHSA ¥ 3G (PeKTOB BCIUTBIBAHMSA PACPOCTPAHACTCH HA ClTy4al BOObI

¢ MaKCHMANTLHOH IUTOTHOCTHIO i Muana3ona remmepaTyp 0-30°C. Ilpu aHanu3e BBOAATCA IBa

TEIIoBLIX napaMeTpa (A;, A2) ¥ TpH Gu3MYeckuX napamerpa (Bi, Ra, Ma). TIpeacTasieHbl pe3yib-
TaThl AJIA CNIy4aeB MOJOTPeBa CHU3Y M CBEPXY.



