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MAXIMUM DENSITY EFFECTS ON THERMAL 
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Abstract-Nield’s linear stability analysis (1964) for a horizontal liquid layer considering surface tension 
and buoyancy effects is extended to the case of water with maximum density effect for the temperature 
range &3o”C. Two thermal parameters (A,, &) and three physical parameters (Bi, Ra, Ma) appear in 

the analysis. Typical results are presented for the cases involving heating from below and above. 

NOMENCLATURE Superscripts and subscripts 

A, temperature difference ratio 

(Tl - T,,,)lTd ; 
a, dimensionless wave number; 

Bi, Biot number, q. d/K; 

d, liquid layer thickness; 

; 

gravitational acceleration; 

M: 

thermal conductivity of liquid; 
number of divisions for liquid layer; 

Ma, Marangoni number, co (AT)d@); 

P, pressure; 

P? dimensionless perturbation pressure, 

p’/(po avid’); 

40, rate of change with temperature of the 

time rate of heat loss per unit area from 

free upper surface; 

Ra, Rayleigh number, see equation (10); 

T, T,, T2, temperature, lower plate temperature, 
free surface temperature, respectively; 

t, time; 
U, V, W, perturbation velocity components in 

X, Y, Z directions; 

u, v, w, dimensionless perturbation velocities 

(u, V W)l(@); 

;-, 
b, 
max, 

prime, perturbation quantity; 
dimensionless disturbance amplitude; 
quantity at unperturbed static state; 
value at a density maximum. 

1. INTRODUCTION 

X, Y, Z, rectangular coordinates; 

x, Y, 2, dimensionless coordinates (X, Y, Z)/d. 

Greek symbols 

IN RECENT years, experimental investigations on the 

onset of convection in a horizontal water layer have 
been reported in the literature for the thermal con- 
ditions involving both melting [l-4] and formation 
[l, 51 of ice. In these studies, the water layer is 
characterized by stable upper region and potentially 
unstable lower region separated by an interface with 

maximum density at 4°C and by continuously changing 
layer thickness. Theoretical studies on thermal in- 

stability of a horizontal liquid layer with maximum 
density have also been presented for various boundary 
conditions corresponding to rigid and free surfaces 
[6-lo]. Previous theoretical and experimental investi- 
gations on thermal instability with maximum density 

effects are confined to Rayleigh problem only where 
the driving force for convection is buoyancy force. For 

thin horizontal liquid layers with an upper free surface, 
it is known that the onset of convection can be induced 

by surface-tension gradients [l l] and buoyancy 
forces [12, 131. 

a, thermal diffusivity; 

P? coefficient of thermal expansion; 

Yl>YZ> temperature coefficients for density- 
temperature relationship; 

8, dimensionless temperature disturbance, 

#/AT; 

:I, 12, 

viscosity; 
thermal parameters defined in 
equation (9); 

V, kinematic viscosity; 

P* PO, density, reference density; 

00, negative of the rate of change of surface 
tension with temperature; 

The purpose of this study is to determine the 

stability criteria for the onset of cellular convection 
driven by surface tension and buoyancy force in a 
horizontal thin liquid layer by considering the density 
inversion effect for water using a cubic temperature- 
density relationship. The lower boundary is taken to 
be rigid and thermally conducting while at the upper 

free surface Pearson’s boundary conditions [ll, 121 
are imposed to facilitate the analysis. With the 
maximum density effect, the liquid layer can be unstable 
regardless of whether heating is from below or above. 
The physical model in the present instability analysis 
is patterned after that of Nield [12]. The maximum 
density effect for water temperatures ranging from 0 to 

vertical temperature gradient ( TI - T,)/d; 30°C is of primary concern in this study. The 

temperature difference ( TI - Tz) = zd. temperature regime under consideration may be 
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observed under northern climatic conditions. The 
results of present analysis may be used in assessing 
the importance of cellular convection in the growth 
and decay of ice in contact with a thin water layer. 
The incorporation of the maximum density effect in 
instability analysis on buoyancy and surface-tension 
induced cellular convection does not appear to have 
been considered in the past. 

2. FORMULATION OF THE THERMAL 
INSTABILITY PROBLEM 

Following the known procedure for linear stability 
analysis [lo, 14, 151 and referring to the coordinate 
system shown in Fig. 3, the perturbation equations 
can be written as 

E!+c!!+w=o 
ax i;Y az 

au I iI?P 

dt= 
----$vv’;r,y,~u= 

p. ax 

(;I/ 1 dP 
-= ---+vv~,r,zv 
at Po2Y 

aw -L~K+vv&,Iw__-B &J 
x= podZ PO 

ae’ 
- zw+zv:,r,ze~ 

dt- 

where V$,r,z = d2/aX2 + a2/a Y2 + a”=Z2 and the per- 
turbed quantities for temperature, pressure and density 
are defined by T = Tb (Z) + B’(t, X, Y, Z), P = Pb + P’, 
and p = pb+ 6p, respectively. As shown in [12], the 
boundary conditions at the lower boundary are 

W=O, g=O and 9’=0 at Z=O (6) 

while at the upper boundary 

W=O, ~v$=cT~($+$) and 

-K’g=qeB at Z=d. (7) 

The density-temperature relationship for water can be 
approximated by the following equation for the 
temperature range %3o”C [lo]. 

P = ~max[l-li~(T- T,~~)=-Y~V-L)~I. (8) 

Considering the change in the density 6p caused by 
the temperature perturbation 8’, one obtains the 
following expression after neglecting the terms contain- 
ing (Q’)’ or higher order. 

A = (Tl - T,,,)/AT and AT = Tl - T2 = Td. The ther- 
mal parameters ii and ibz were first introduced by 
Sun et al. [lo]. 

Introducing the dimensionless variables (X, Y, Z) = 

d(x, Y, z), (U, I’, I+‘) = (a/d) (n, 0, w), P’ = (PO dd%, 

0’ = (AT)@, and eliminating u, v, p by using continuity 
equation, one obtains the following perturbation 
equations by assuming the principle of exchange of 
stability to be valid [lo, 151. 

vzv=w = -Ra(l+3.rz+i2z=)V:0 (10) 
VQ= -_u’ (11) 

where Ra=g(2yiAAT)(AT)d3[l +(3y2/2yl)(AAT)]/(vcO, 

v2 = a2/ax2 + a2/ay2 + a2/az2 and v: = a2jax2 + a2jay2. 
The boundary conditions are 

^ t 
wz?=Q=O at z=O 

az 
(12) 

w=O, g=MaV:0 and g= -BiQ at z= 1 (13) 

where Ma = ao(AT)d/@) = Marangoni number and 
Bi = q. d/K = Biot number. In contrast to the classical 
Benard Problem, the onset of convection is possible 
with heating from below or above because of the 
presence of (AT)= in the expression for Rayleigh 
number. Since restriction is made to the case where 
instability first appears in the form of cellular con- 
vection rather than oscillations associated with over- 
stability, the following normal modes can be assumed 
for the disturbance quantities. 

[w,Q] = [w+(~),B+(~)lexp[i(a~x+a2~)]. (14) 

Substituting equation (14) into equations (10) and (1 l), 
one obtains 

(D=-a=)zw+ = a=Ra(l+i,iz+12z=)~+ (15) 
(D=--=)e+ = -w+. (16) 

With the boundary conditions 

W+ =D~+=(j+=o at z=O (17) 
w+ = 0 D=w+ = -_a=&f&+ and 

DC?+ = -Ml+ at z = 1 (18) 

where D = d/dz and a = (a: + &)rl’ is the wave number 
of the disturbance. For the limiting case Ma = 0 and 
Bi = co, the present eigenvalue problem reduces to that 
discussed by Sun et al. [lo]. When Ra = 0, the problem 
reduces to that solved by Pearson [ll]. The limiting 
values Bi = 0 and cc correspond to constant heat flux 



Maximum density effects on thermal instability 561 

and constant temperature and the surface is usually 
referred to as “insulating” and “thermally conducting” 
respectively. For given thermal boundary conditions 
(given li, iZ and Bi) and a given Marangoni number 
Ma, the neutral stability relations give Ra as a function 
of a and the critical (minimum) Rayleigh number is 
sought. Conversely when Ra is known, one can 
determine the critical Marangoni number and the 
corresponding wavenumber. Apparently, the present 
problem can be solved by analytical method [lo, 12, 
15, 161 as well as finite-difference method. The 
numerical method is preferred in this study since the 
efficient general finite-difference method is available 
from the related study [17]. 

The finite-difference scheme used is due to Thomas 
[18, 191 and the iterative solution starts with equation 
(11) by using wz = sin(2n;k/M), k = 2, . . . , M for the 
disturbance velocity w+. The mesh size used is M = 50 
and a new and improved eigenvalue Ra or Ma is 
calcuIated by the follo~ng equation [20]. 

@a, Ma)ncw = @a, M&d [F fw,‘%d] ‘/2 / 

[ph%ew]*“. (19) 

The convergence criterion is 

~l(w~~,,,-(w:~,,~l/~l(w~)“, G 10-6. (20) 

It is found that only a few iterations are required to 
satisfy the above criterion and five significant figures 
for critical eigenvalue are correct. 

3. NUMERICAL RESULTS AND DISCUSSION 

Because of the number of parameters involved, only 
typical numerical results can be presented here. The 
thermal condition parameters hr, A2 depend on A as 

well as AT = rd. For the temperature range (O-30°C) 
under consideration, A is always positive and AI is 
always negative. Furthermore, the temperature co- 
efficient yr (positive) is of order lo-* and &(negative) 
is of order 10e7. The expression for AZ reveals that 
& is negative for heating from below and positive for 
heating from above. In addition, the unstable liquid 
layer is always confined to the region near the bottom 
plate and instability occurs only when T1 2 4°C for 
heating from below and when Ti < 4°C for heating 
from above. 

Figures 1 and 2 show neutral stability curves for 
various cases and the effect of the parameter can be 
seen clearly. The limiting cases of Ra = 0 and Ma = 0 
corresponds to Pearson problem [ll] and Rayleigh 
problem, respectively. The distributions of eigen- 
functions w’ and 0’ are shown in Fig. 3 for Ma = 10, 
d1 = - 1.5, & = -0.2 (heating from below) with Biot 
number as parameter. It is seen that the curves are 
quite similar in the lower region up to the location 
z where the value is maximum. Near the upper free 
surface, the Biot number effect is quite appreciable, 
particularly for 6 + . The disturbance profiles for 
1% = -2, AZ = 0.4 (heating from above) and Bi = 100 
are shown in Fig. 4. With Ma = 0, the disturbance 
quantity becomes negative. Otherwise the curves for 
Ma = - 30 and - 1000 are similar. 

EO- 
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a 

FIG. 1. Neutral stability curves for iI = - 1.0, 
& = -0.3, Bi = 0 and II = -1.5, & = -0.2, 

Bi = 10. 
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FIG. 2. Neutral stability curves for 2, = -0.75, 
A2 = 0, Ma = 10’ and & = -2.5, A2 = 0.4 and 

Ra = 103. 

The relation between critical Marangoni number 
Ma* and Rayleigh number is shown in Fig. 5 for a 
range of Biot numbers with 1r = - 1.5 and &, = -0.2 
(heating from below). As Bi increases, the critical 
Marangoni number also increases supporting the 
physical explanation given in [12] for the case of 
conducting free surface (Bi = co). Figure 6 illustrates 
the variation of the critical Rayleigh number Ra* with 
the Marangoni number for a range of Biot numbers 
with 11 = - 1.25 and A2 = 0. The general trend is 
similar to that shown in Fig. 2 of [13] which 
corresponds to the limiting case without maximum 
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FIG. 3. Coordinate system and disturbance profiles for 
~~+I%L and 6”/@&, for 11 = -1.5, E,, = -0.2, Ma = 10 

with Bi as parameter. 

FIG. 4. Disturbance profiles for w+/w& and 0+/S&, for 
I, = -2.0, A2 = 0.4, Bi = 100 with Ma as parameter. 

FIG. 5. Relation between critical Marangoni number and 
Rayieigh number with Bi as parameter for AI = -1.5 and 

/I* = -0.2. 

density effect. For smaller Biot numbers, the 
Marangoni effect is seen to be appreciable. As explained 
in [12], the critical Rayleigh number for a fixed value 
of h4a. is clearly seen to he an ~ncre~ing function of 
Bi. The expression for the thermal parameter y2 reveals 
that & = 0 when yz = 0 (parabolic density-tempera- 
ture relation valid for temperature range 0 _ 8°C) 
or TI = T,,,. For given values of Marangoni number, 

the relation between critical Rayleigh number Ra* and 
Biot number is shown in Fig. 7 for AI = - 1.5 and 
AZ = -0.2 (heating from below). At Bi = lO*, the 

I I I 
0 65 1x3 195 260 325 

Ma 

FIG. 6. Relation between critical Rayleigh 
number and Marangoni number with Bi 
as parameter for it = - 1.25 and & = 0. 

5 yp I 
10-1 100 10’ 102 103 104 

BI 

FIG. 7. Relation between critical Rayleigh number and Biot 
number with Mnas parameter for A, = - 1.5 and 12 = -0.2. 

asymptotic value Ra* = 7023.4 is reached. In interpret- 
ing the behavior of the curves for Ma = 100 and 1000 
at the other end, it is useful to note that for a given 
Marangoni number a critical value of Ra* does not 
exist below a certain value of Bi as shown in Fig. 6. 

Similar plot for the case of heating from above with 
ii1 = -2.0 and iz = 0.4 is shown in Fig. 8. One also 
notes the existence of the asymptotic value for Ra* 

at Bi= 104. Selected numerical instability results are 
listed in Tables 1 and 2 for future reference. For the 
case when buoyancy effects are negligible (Ra = 0), the 
values of the critical Marangoni number and the cor- 
responding waven~~r agree excellently with those 
listed in [ 12,211 for various values of Bi. On the other 
hand, with Ma = 0 and Bi = 104, the values of 
Ra* = 7023.4 and a* = 2.992 compare well with 
Ra* = 7027.86 and a* = 2.987 listed in [22] for 
Bi = co. Thus, one may conclude that the present 
numerical results are suklkiently accurate (five 
significant figures are correct). 
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Table 1 Instability Results for A, = -1.5 and A2 = - 0.2 

Ra 0 3x103 5 x 103 Ma 0 102 103 

Bi (I* Ma' a* Ma* a* Ma* Bi a* Ra' a* Ra* a+ Ra' 

0 1.993 79.687 2.054 76.107 2.282 64.023 0 3.137 7587.0 

1 2.246 116.25 2.242 104.41 2.422 82.070 1 3.093 7471.0 

10 2.742 413.92 2.592 339.32 2.652 235.25 4 3.040 7297.4 2.693 5840.2 

102 2.975 3307.8 2.722 2642.0 2.732 1745.8 10 3.013 7176.7 2.856 6482.8 

103 3.009 32.21~10~ 2.742 25.65~10~ 2.742 16.a4x103 60 2.995 7056.0 2.967 6923.5 2.774 5203.0 

lo4 3.013 32.12~10~ 10' 2.994 7043.3 2.977 6962.8 2.831 6067.5 

103 2.992 7025.3 2.990 7017.1 2.975 6941.8 

104 2.992 7023.4 2.991 7022.6 2.990 7015.2 
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Table 2 Instability Results for A, = - 2.0, X2 = 0.4 

l!a ai 0.1 1.0 10 102 103 _ 

a* 4.603 4.002 3.402 3.332 3.322 3.322 
0 

RCA' 13535 12502 ii804 11539 11500 11495 

-102 a* 3.346 3.324 3.322 

Ra* 11600 11507 11496 

-103 a* 3.402 3.338 3.322 

RP 12059 11565 11496 
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FIG. 8. Relation between critical Rayleigh number and Biot 
number with Ma as parameter for I1 = -2.0 and & = 0.4. 
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Ra/Rac 

FIG. 9. Variation of normalized Marangoni 
number Ma/Ma, with normalized Rayleigh 
number Ra/Ra, with Bi as parameter for 

A1 = - 1.5 and A2 = -0.2. 

Nield [ 12,261 concludes for the case of linear density 
variation that the coupling between the buoyancy and 
surface-tension effects is surprisingly tight for all values 
of Bi and especially tight for Bi = 0. It is instructive 
to compare the present results considering maximum 

density effects with those shown in Figs. 1 and 2 of [12]. 
The comparison is shown in Figs. 9 (plot of Marangoni 
and Rayleigh numbers for marginal stability) and 10 

(plot of wavenumber corresponding to marginal 
stability against normalized Rayleigh number). Figure 9 

shows that with maximum density effect the coupling 
is rather weak and the Biot number effect is character- 
istically different. Furthermore, Nield’s result [ 121 

shows that the form of the relationship between Ma 
and Ra is a rather weak function of the Biot number 
but this is not so for the present problem. As noted 

by Nield [12,26], the departure of an actual curve from 
the straight line, RajRa, + Ma/Ma, = 1, representing 
perfect coupling, is a measure of the amount of 
uncoupling. Ra, is the critical Rayleigh number cor- 
responding to Ma = 0 and Ma, corresponds to Ra = 0. 
In Fig. 10, one sees that when the free surface is 
“insulating” (Bi = 0), the coupling is especially tight for 
the case of linear density variation [12] but the 
dimensionless wavenumber for the present problem 
varies considerably as the value of Ra/Ra, increases 
from 0 to 1. Figure 10 also shows that larger cells or 
smaller wavenumbers are associated with the insulating 
case Bi = 0. At this point, Fig. 3 also supports the 
observation that with an insulated boundary it is easier 

for temperature perturbations to be set up [12]. As Bi 
increases, the corresponding wavenumber increases 
and the size of the convection cell decreases. 

Streamlines in Benard convection cells induced by 
surface tension and buoyancy are given by Nield [23]. 
The streamlines in the two vertical planes of symmetry 
of a hexagonal cell at the onset of convection are shown 
in Fig. 11(a) and (b) for I1 = -1.5, iZ = -0.2, 
Ma = 10 and Bi = 100 by using equations (4) and (5) 
of [23]. In Fig. 11, the left-hand margin represents the 
cell boundary and the right-hand margin corresponds 
to the cell centre. In contrast to the streamline patterns 
shown in [23], the eyes of the streamlines are seen to 
be located nearer to the lower rigid plate. Figure 3 also 
shows that the maximum vertical disturbance w+ is 
located nearer to the bottom plate. One notes that for 
the present problem the unstable layer is situated near 
the bottom plate. 
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320 .--I--r 

Ro/Ra, 

FIG. 10. Variation of dimensionless wave- 
number CI with normalized Rayleigh number 
Ra/Ru, with Bi as parameter for i., = - 1.5 

and ;Lt = -0.2. 

X,=-15. A,=-0.2.Ma=lO,Bi=l00 q=O.l 

-----X 

(b) 

FIG. 11. Streamlines for RI = - 1.5, A2 = -0.2, &4n = 10, 
Ei = lo’, (a) through the center and a vertex of the hexagon, 
(b) through the center of the hexagon and the mid-point 

of a side. 

4. CONCLUDING REMARKS 

1. The physicat model [12] assumes that the free 
upper liquid surface remains undeformed. Nield’s linear 
stability analysis [ 121 considering surface tension and 

buoyancy effects has been confirmed by experiments 
[24, 251. The limitation of the assumption that 
departures of the upper surface from a horizontal plane 
are negligible as well as the possibility for oscillatory 
instability is well discussed by Nield [26]. Future 

analysis should include surface viscosity effect and 
surface deformation pointed out by Striven and 
Sternling [27]. 

2. The case of heating from above may have direct 
application in surface melting involving ice layer on a 
lake or pond. The present analysis can be used in 

predicting the onset of convection for a thin liquid layer 
on ice driven by surface-tension gradients and 
buoyancy forces. 

3. Within the scope of present study, a full para- 
metric study of the problem is not practical since two 

thermal condition parameters (JLr,A.z) and three flow 
parameters (Bi, Ra, Mn) appear in the analysis. The 

graphical results presented are useful in assessing the 
effects of Bi, Ra and Ma on the onset of instability. 

4. The Biot number effect is similar to that discussed 

in [ 121. The detailed physical explanation given in [ 121 
provides further insight into the role of maximum 
density in the present instability problem. 
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EFFET DE DENSITE MAXIMALE SUR L’INSTABILITE THERMIQUE PRODUITE PAR 
UNE COMBINAISON DES FORCES DE GRAVITE ET DE LA TENSION SUPERFICIELLE 

Resume-L’itude analytique de stabilite lin&aire de Nield (1964) pour une couche horizontale de liquide, 
qui tient compte de l’effet de la tension superficielle et des forces de graviti, est &endue au cas de I’eau 
avec effet de densite maximale dans le domaine de temperatures 0-30°C. Deux parametres thermiques 
(A,, &) et trois parametres physiques (Bi, Ra, Ma) interviennent dans l’analyse. On donne les rbultats 

reprtsentatifs des cas qui supposent un chauffage soit par le dessous soit par le dessus. 

DER EINFLUSS MAXIMALER DICHTE AUF DIE VON AUFTRIEB UND 
OBERFLACHENSPANNUNG ERZEUGTE THERMISCHE INSTABILITAT 

Znaammenfassung-Die lineare Stabilitatsanalysevon Nield (1964) fur eine horizontale Fhissigkeitsschicht 
unter Beriicksichtigung der Oberflachenspannung und der Auftriebseffekte wird erweitert auf den Fall 
von Wasser mit einem Maximaldichteeffekt fur den Temperaturbereich von 0-30°C. In der Analyse 
erscheinen zwei thermische Parameter (1,) AZ) und drei physikalische Parameter (Bi, Ra, Ma). Fiir Heizung 

von unten und von oben werden typische Ergebnisse gebracht. 

BJIHRHHE MAKCBMAJIbHOH I-IJIOTHOCTH HA KOHBEKTHBHYIQ 
HEYCTOfiHHBOCTb 3A CYET COBMECTHOFO AEHCTBHR I-IOA’bEMHOH 

CHJIbI H I-IOBEPXHOCTHOI-0 HATIIXEHRII 

.&~FIoT~uIIsI-~H~~~H~~~~ aHami3 Hunna (1964) ~CTO%%IBOCTH rOpki30HTaJIbHorO cnox miAmmi 

Cy~eTOM~OBepXHOCTHO~OHaTII~eHURH3~~KTOBBC~bIBaHHRpaC~pOCTpaHIleTCIlHa~y~aiBOAbr 

C MaKCHMUIbHO8 rUlOTHOCTbKJ AJIIl AIWIIa3OHa TeMnepaTyp 0-30°C. HpW aHaJIU3e BBoARTCSl ABa 
TelIJIOBbIXIlapaMeTpa(hl,h*) H TpB &i3H'iecKUXlIapaMeTpa (W, Ra, Ma). ~~ACTaBJIeHbl~3yJlb- 

TaTbI AJUICJlyYaeBllOAOl-pBaCHH3y HCBepXy. 


